

Using Quantitative Data

Monday 6 February 2022

Annette Hayton

Senior Research Fellow, NERUPI Convenor

Joanne Moore

Visiting Fellow, NERUPI Researcher

University of Bath

Which of these best describes you:

1. Tend to avoid data analysis
2. Confident using numbers to tell a story
3. Some understanding of statistical techniques
4. Stats wizard

NERUPI Members' website

THE REFLEXIVE CYCLE TOOLKIT

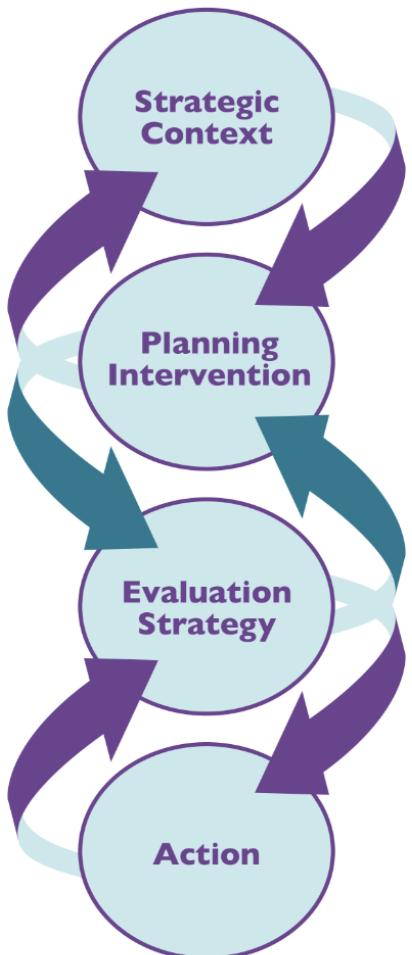
Basics ▾

Context ▾

Planning ▾

Evaluation ▾

Action ▾



Members area

Welcome to the NERUPI Members' Area

NERUPI MEMBERS WEBSITE

NERUPI Evaluation

moves away
from the
**medical
model**

diagnose
treatment

**Focus on
inequalities
not individual
needs**

EVALUATION

Quantitative methods pros and cons

<ul style="list-style-type: none">1. Used to test hypotheses2. Different variables can be studied in detail3. Used to assess cause-and-effect relationships whilst controlling for other variables4. Following agreed procedures allows for reliability and validity5. Easier to replicate to test the results or do other research6. Can make it possible to generalise the results to other situations7. Can allow quantitative predictions to be made8. Methods can be quick and relatively low cost (e.g. surveys). Useful for collecting data from large numbers9. Results are relatively independent of the researcher10. Data analysis software facilitates analysis and reporting	<ul style="list-style-type: none">1. Unable to convey the richness and depth of detail as other methodologies.2. Unable to answer questions of why things happened and the meaning3. Not able to look at how individuals react or respond differently to situations and each other4. Analysing relationships between variables might lead to formulated and static view of life5. The researcher's categories may not reflect people's understandings6. Phenomena may be missed because the focus is on testing the existing theory (confirmation bias).7. Knowledge produced may be too abstract and hard to apply to practice
--	---

Adapted from Gratton and Jones (2004) and Burke et al (2004)

Considerations for quantitative research

Issue	Considerations	Issue	Considerations
Access to Data	Data sharing, Admin Data (e.g. applications), Tracking , Data collection, Standardised tools , Questionnaires/Surveys/Polls	Counterfactual	Subjective/Objective, Pre-intervention data, Control/Comparison group data, Random allocation v quasi-experimental design
Measurement	Categorical, interval or ordinal data, Quantifiable characteristics, Rating scales/Likert scales, Validated scales Reliability, Validity, Cognitive testing	Data analysis	Trends/Patterns, Benchmarking , Relationships/ Correlation, Prediction/ modelling
Numbers	Population size, Sampling Methods, Purposeful sampling	Skills & software	Tables, Graphs, Figures (descriptive statistics), Statistical modelling (inferential statistics)
Ethical issues	Informed consent, Data protection, Confidentiality	Other	

What makes a good measure

- **Quantifiable** – objective rather than subjective
- **Understandable** – the 10 seconds test?
- **Actionable** – measures that you can actually impact
- **Repeatable** – ideally capture trends
- **Timely** – within scope
- **Feasible** – within time/resources etc

Member resources

https://www.nerupi.co.uk/members/resources/methods-example-overview

Basics ▾ Context ▾ Planning ▾ Evaluation ▾ Action ▾

Different methodologies for data collection

◀ RESOURCES

This activity discusses different methodologies for data collection. It provides some examples of different data collection methods tailored to whether you are interested in quantitative or qualitative methods, and embedded or discrete evaluation.

Use the box below or, click here to open a [full size version](#) in a new tab.

Research methods overview

Types of Data

Quantitative
- how many?
- to what extent?
- how often?

Qualitative
- in what way?
- how?
- why?

Quantitative and Qualitative data have distinctive features. Click on the diagram for more information. Both types of data can be used in evaluation in complementary ways. Click on the diagram for more information.

Related resources

[Selecting your evaluation method\(s\)](#)

[Mixed methods guide](#)

Methods Guides available on:

Using symbols; Interviews; Focus groups; Feedback from stakeholders and interested parties; Creative expression; Reflective accounts; Evaluation wheel; Photo elicitation; Questionnaire surveys; Structured observation; Tracking; Voting; Use of Validated tools; Experimental and Quasi-experimental methods; Case studies; Comparative case study analysis; Process tracing; Qualitative Comparative Analysis; Contribution Analysis.

Different types of questions

Question Types

- Exploratory
- Predictive
- Evaluative (pre- and post-)
- Process

Exploratory: Learn more about a topic, probe on the main factors involved

How does participation in our activity affect students' attitudes?

E.g. Do you feel that x (e.g. the summer school) has positively or negatively affected you and if so how?

Open ended questions in surveys, Interviews and focus groups, Creative methods, Photo elicitation, Observational research

Predictive: Thinking about the potential future outcome of taking part in an activity

What difference does our intervention make to intention to progress in education?

E.g. As a result of x (e.g. the summer school) are you more likely to y (e.g. apply to university). What do you feel you achieved by taking part in this activity?

Post activity questionnaires and surveys, tests of knowledge and understanding

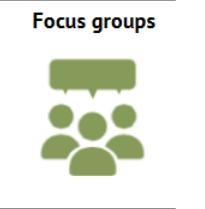
Evaluative (pre/post): Documenting impact against a measure

Does attendance at our activity increase students' HE confidence a measurable way?

E.g. How confident do you feel... (e.g. in your ability to progress to university) - repeated before and after participation in an activity

Pre and post questions, tests or surveys or other methods which use rating scales to quantify pre and post intervention changes (e.g. evaluation wheel)

Process: Understand the mechanisms at play in successful programmes



What are we doing that is working?

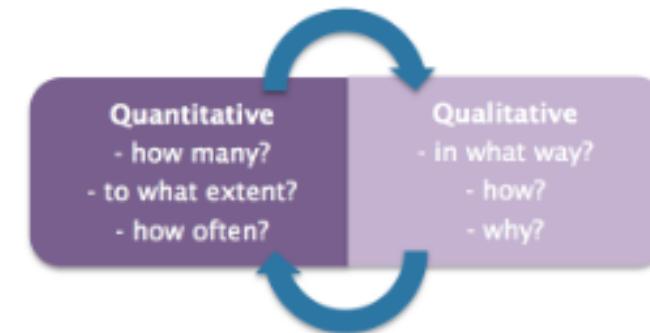
E.g. What's the best thing about this activity? How would you rate x,y,z?

Feedback forms, post activity surveys, interviews, focus groups

Data collection methods overview

Research methods

Surveys


Questionnaire surveys use a structured format and they are applied in a systematic way. They can have targeted questions or they can be more general in their content. Either open or closed question formats can be used. Structured questionnaire surveys designed for quantitative analysis usually have a closed format (e.g. checkbox, multiple choice, rating scale, agreement scales) to aid quantitative analysis (as a general guide, only 10% of the questions on surveys tend to be open-ended).

[Find out more](#)

[Look at a practice example](#)

Quantifying qualitative data

	Quantitative	Qualitative
Using symbols	✓	✓
Interviews	✓	✓
Focus groups		✓
Feedback from stakeholders and interested parties	✓	✓
Creative expression		✓
Reflective accounts	✓	✓
Evaluation wheel	✓	
Photo elicitation		✓
Questionnaire surveys	✓	✓
Structured observation	✓	✓
Tracking	✓	
Voting	✓	
Use of Validated tools	✓	
Experimental and Quasi-experimental methods	✓	
Case studies	✓	✓

- Triangulation of sources
- Mixed methods approaches

TASO Validated Scales

EXAMPLE -

Intermediate outcome: academic self-efficacy (prospective)

This is a scale for use with learners in schools, sixth-forms, or colleges, or young people not in education.

Prompt

The following statements relate to how you feel about studying in higher education from an academic perspective. Please consider each statement and indicate the extent to which you agree or disagree.

Items

1. I am confident that I can get the grades required to progress to university.
2. I have the academic ability to do well at university.
3. I could manage with the level of study required at university.

Response options, with coding

Strongly disagree (1) – Disagree (2) – Neither agree nor disagree (3) – Agree (4) – Strongly agree (5)

Approaches to impact evaluation (The OfS Standards of Evidence)

	Description	Evidence used	Claims you can make
Type 1: Narrative	The evaluation provides a narrative and a coherent theory of change to motivate its selection of outreach activities in the context of a coherent outreach strategy	Evidence of impact elsewhere and/or in the research literature on outreach effectiveness or from your existing evaluation results	We have a coherent explanation of what we do and why Our claims are research-based
Type 2: Empirical Research	The evaluation collects data on outcomes and impact and reports evidence that those receiving an intervention have better results, though this does not establish any direct causal effect	Quantitative and/or qualitative evidence of a pre/post treatment change or a treatment/non-treatment difference	We can demonstrate that our interventions are associated with beneficial results.
Type 3: Causality	The evaluation methodology provides evidence of a causal effect of an intervention	Quantitative and/or qualitative evidence of a pre/post treatment change on a treated group relative to an appropriate control or comparison group using an appropriate and robust research design	We believe our intervention causes improvement and can demonstrate the difference using a control or comparison group

Approaches to impact evaluation (The OfS Standards of Evidence)

- One-Shot - data following an activity or programme
- Retrospective Pre-test - recall of perception/behaviour and change
- One-Group Pre- and Post- Design – before and after data
- Time Series Design –data before, during and after
- Pre- and Post- Control-Group Design – data from activity group and control/comparison group before and after the activity
- Post- Control-Group Design – data from the activity group and a control/comparison group following the activity
- Case Study Design – in-depth, qualitative data

Questions to explore in groups

Which Example are you looking at:

Which Design Is It?

What would this evaluation tell you about your activity?

What wouldn't you know from the data?

What are the potential limitations and how would you address these?

Any practical or operational problems or issues anticipated and how would you address these?

Debrief:

What did you discuss?

Did any designs seem better/worse than others?

How could you compensate for weaknesses?

How would you decide which design to use for your own evaluation?

- Descriptive Statistics - Tables, Graphs, Figures, Trends/Patterns
- Inferential Statistics - Relationships/Correlation, Prediction/modelling
- Data analysis skills
- Software

Statistical significance and statistical power levels (conventionally 95% and 80%)

Free Tools for sample size calculating:

SAS: https://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_clientpss_sect002.htm

PASS: <http://www.ncss.com/software/pass/>

3ie: <https://www.3ieimpact.org/evidence-hub/publications/working-papers/power-calculation-causal-inference-social-science-sample>

Optimal Design: <https://sites.google.com/site/optimaldesignsoftware/home>

Signposting

- Using standards of evidence to evaluate outreach, University of Exeter, February 2019
<https://www.officeforstudents.org.uk/publications/standards-of-evidence-and-evaluating-impact-of-outreach/>
- The Evaluation of the Impact of Outreach: Proposed Standards of Evaluation Practice and Associated Guidance, Dr Claire Crawford, Dr Siobhan Dytham and Professor Robin Naylor, June 2017 <https://www.nerupi.co.uk/members/resources/test-3333>
- Innovation Growth Lab: A guide to RCts <https://innovationgrowthlab.org/guide-randomised-controlled-trials>