

Comparative Evaluations

19th October 2023

Joanne Moore, NERUPI Development Officer, University of Bath

Annette Hayton, NERUPI Convenor. Senior Research Fellow, University of Bath

I. Quantitative and Quasi-Scientific approaches

- Changes compared to baseline (participants)
- Comparison of changes for two groups of participants in controlled environments (e.g. outcomes different locations/delivery models)
- Changes for participants against a control group (random experiment) or comparison group (quasi-experimental methods)

2. Qualitative and Realist approaches

- Focus on the context and theory of practices
- What works for whom in what circumstances

The Office for Students' Standards of Evidence (OfS, 2019)
Three types: Narrative, Empirical, Causal

- 1. Basis for comparisons and making causal inferences**
- 2. Quantitative approaches**
 - When to use
 - Examples of different types of comparisons and groups
 - Different analytical techniques
- 3. Qualitative approaches**
 - When to use
 - Example of Qualitative Comparative Analysis (QCA)
 - Sign-posting
- 4. Concluding remarks and questions**

John Stuart Mill's Five 'Canons'

The 'Canon'	Experiment	Finding
1. Method of agreement	Looks at a factor in common, with the same outcome	<i>"If two or more instances of the phenomenon under investigation have only one circumstance in common, the circumstance in which alone all the instances agree is the cause (or effect) of the given phenomenon"</i>
2. Method of difference	Looks at the outcome in the absence of one factor	<i>"If every circumstance [is] in common save one... the circumstance in which alone the two instances differ, is the effect, or the cause, or an indispensable part of the cause, of the phenomenon"</i>
3. Indirect method of difference	Applies the method of agreement <i>before and after</i> an event or external stimulus	The event/stimulus is seen as responsible for the changed outcome
4. Method of residues	Repeated use of the method of agreement	Elimination of previous causes
5. Method of concomitant variation	Correlation between two factors and a common external factor	The outcome is dependent on the external factor which can't be eliminated

Activity I: Pop's Seafood Diner

Four people ate out on their way home, they all became sick....

1. First Person - Tasted a little bit of everything
2. Second Person – Oysters and Halibut
3. Third Person – Only Oysters
4. Fourth Person – Oysters and Shrimps

➤ **Which food caused the illness?**

➤ **Vote now!**

[https://www.menti.com
/alic54vkwp3](https://www.menti.com/alic54vkwp3)

Join at menti.com use code 4449 096

Which food caused the illness?

Activity 1: Pop's Seafood Diner

Four people ate out on their way home, they all became sick

1. First Person - Tasted a little bit of everything
2. Second Person – Oysters and Catfish
3. Third Person – Only Oysters
4. Fourth Person – Oysters and Shrimps

Plus 3 more people who didn't become sick

5. Fifth Person – Only Shrimps
6. Sixth Person – Only Halibut
7. Seventh Person – Shrimps and Haibut

Indirect method of difference – more certainty that oysters were responsible

Considerations

Number of Variables	Number of Cases				
		1-2	Small N	Medium N	Large N
	Large V	Paired comparison	Comparative methods like QCA	Quantitative Methods	Multi-variate Statistical Analysis
	Small V				
	1-2	Description	Bivariate descriptive classification		

V=variables; N=cases

Multiple dimensions

- **Objective dimension**

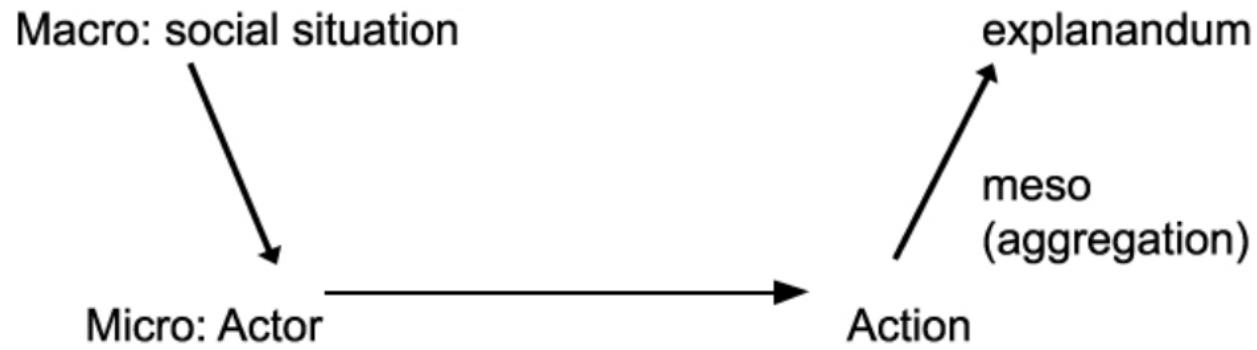
- Organisations, social structures, institutions

- **Subjective dimension**

- Perceptions of the world, sentiments, beliefs

- **Normative dimension**

- Principles of human lives, values, judgements


Behavioural outcomes

Actions

Non-behavioural outcomes

Thoughts, perceptions, feelings

Multiple dimensions

Adapted from Coleman 1990 and Esser 1993

Macro level - societies, communities
Meso level – organisations, interest groups
Micro level - individual persons and actors

Quantitative approaches

Orientation	Variable orientated
Explanatory Focus	<ul style="list-style-type: none"> Effects of causes
Concepts	<ul style="list-style-type: none"> Linear, cumulative Independent effect of each variable
Measurement	<ul style="list-style-type: none"> Quantitative <ul style="list-style-type: none"> - Cross case comparison - Estimation of average effects
Cases	<ul style="list-style-type: none"> Large N <ul style="list-style-type: none"> - All cases/Random/Systematic sampling
Aims	<ul style="list-style-type: none"> Proof of causation/promising results Estimation/Probability/Generalisations

Types of data/outcome measures

- Assessments/tests/performance (before, after intervention)
- Decision making (e.g. applications to HE)
- Tracking data (e.g. applications by type of HEI, by course)
- Attainment/exams (e.g. school, university course results)
- Survey question results (e.g. intentions, expectations, perceptions)

Analytical approaches

- **Descriptive statistics**

- Comparing means or looking at standard deviations
- Tests of significance of differences and the effect size
- Correlations and similar procedures

- **Statistical methods**

- Regression analysis
- Multivariate statistical analysis

Different ways of
analysing and
presenting data

Example 1: Before and After (individuals)

<https://www.nerupi.co.uk/public/assets/images/Evaluation-Wheel.pdf>
<https://www.nerupi.co.uk/members/resources/indicator-wheel>

Example 2: Before and After (whole group)

Table 1: Agreement with statements

A Statement	B % Pre* (N=103)	C % Post* (N=95)	D Percentage point Change	E % of respondents with a positive change
People like me don't go to university (reverse scored)	30.1%	22.1%	8	27%
I feel well-prepared to make decisions about my next steps in education	59.6%	73.7%	14.1	24%
I have a good idea of what it's like to be a university student	92.2%	92.6%	0.4	0%
I understand how I can use what I'm learning in the future	76.7%	78.9%	2.1	3%
I think I have the skills I will need to be successful in my future studies	15.4%	20.0%	4.6	30%
Deciding what subject options are right for me feels overwhelming (reverse scored)	26.9%	9.5%	17.4	65%

Statistical test for pre/post designs I

- T Test of significance (e.g. P<0.05)

Statement		Mean	Std. Deviation	T-Test Results for Equity of Means (Equal variances assumed)		
				t	df	Sig. (2-tailed)
People like me don't go to university (reverse scored)	Pre Post	2.75 2.65	1.03 1.16	0.61	196	0.543
I feel well-prepared to make decisions about my next steps in education	Pre Post	3.19 2.73	1.15 1.23	2.759	197	0.006

<https://www.nerupi.co.uk/public/assets/images/Options-for-Benchmarking.pdf>

Statistical test for cross-group comparisons

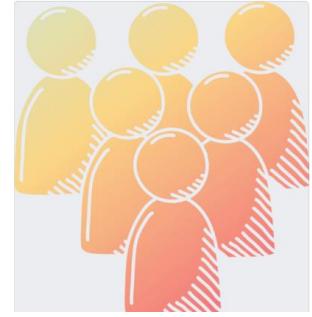

- Chi-Squared Test (e.g. Pearson Chi-Square test (χ^2) of 'goodness-of-fit')

Table 3: “People like me don't go to university” cross-tabulated with HE background

	Disagree	Agree	
No HE Background in Family	17	14	31
	Count	54.8%	100.0%
	% within HE Background	25.0%	31.6%
	% of Total	17.3%	31.6%
He Background in Family	51	16	67
	Count	76.1%	100.0%
	% within HE Background	75.0%	68.4%
	% of Total	52.0%	68.4%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	4.509	1	.034

Discussion

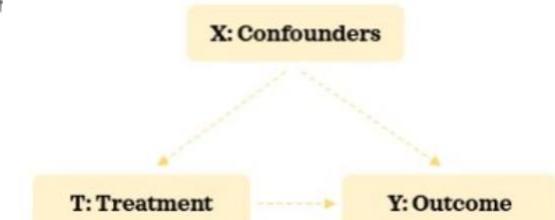
**Are these approaches useful?
Anyone using them?**

Approaches to identifying control and comparator groups

	Method	Pros	Cons
Random selection	Randomly assign potential participants to either receive an intervention or 'business as usual' without the intervention	<ul style="list-style-type: none">- Strong proof of causality- Different levels (individuals. Schools)	<ul style="list-style-type: none">- Ethical, political and practical issues- 'Contamination' issues- Many results inconclusive
Propensity Score Matching (PSM)	Uses a statistically created comparison group based on an analysis of factors affecting propensity to participate	<ul style="list-style-type: none">- statistically mitigates for selection bias	<ul style="list-style-type: none">- Need the data to select comparators and access to their information.- Contamination issues
Regression Discontinuity Design (RDD)	Compares the outcomes of the intervention group with those just above/below the threshold	<ul style="list-style-type: none">- Strength of the design depends on how similar the comparison group is to participants.	<ul style="list-style-type: none">- Need data on those above/below threshold, e.g. through an application process
Difference in difference ('natural' experiment)	Before-and-after change in participants' relative to that of non-participants	<ul style="list-style-type: none">- Better than simple before-after approach- Controls for 'common trends'	<ul style="list-style-type: none">- Sample size and timeline challenges- Selection bias (not random)

HEAT KS4 comparator example (PSM)

Average Attainment 8 Scores (Average grade across 8 subjects)



Average Attainment 8 Scores for low/average/high achievement band at KS2

	Participants	School Average	Difference
Low KS2 Attainment (<L4)	28.2	27.7	+0.5
Medium KS2 Attainment (L4)	44.7	40.3	+4.4
High KS2 Attainment (>L4)	59.0	54.0	+5.0

NB This means that on average medium attaining participants achieved an average of 4.4 grades higher when compared with pupils with similar attainment from the

Positively Mad Participants' Attainment 8 Scores compared with the Non-Participants' Scores

Difference-in-Difference (d-i-d) Example

Ethnicity group	Outcome measures	Condition (reformed status)	Pre-intervention (average over 4 years) Mean (SD)	Post-intervention (average over 1~3 years) Mean (SD)	Descriptive difference-in-difference
BAME students	Module mark percentile rank	Comparator	38.9 (27.5)	39.4 (27.0)	$(40.6-37.4) - (39.4-38.9) =$ + 2.7 percentiles
		Reformed	37.4 (26.5)	40.6 (28.1)	
	% Achieving 2nd class and above	Comparator	38.8% (47.8%)	44.2% (49.7%)	$(42.8-34.9) - (44.2-38.8) =$ + 2.5pp
		Reformed	34.9% (47.7%)	42.8% (49.5%)	
White students	Module mark percentile rank	Comparator	53.5 (28.5)	53.7 (27.5)	$(55.2-51.7) - (53.7-53.5) =$ + 3.3 percentiles
		Reformed	51.7 (27.4)	55.2 (29.1)	
	% Achieving upper second class and above	Comparator	59.5% (49.1%)	65.3% (47.6%)	$(62.7-57.3) - (65.3-59.5) =$ - 0.4pp
		Reformed	57.3% (49.5%)	62.7% (48.4%)	

TASO (2022) The impact of curriculum reform on the ethnicity degree awarding gap

<https://s33320.pcdn.co/wp-content/uploads/Full-report-the-impact-of-curriculum-reform-on-the-ethnicity-degree-awarding-gap.pdf>

Regression Analysis

Regression analysis

- relationship between a dependent variable and one or more independent variables.

Level 2/3 comparisons

- Need to control for the influence of confounding factors

Example

1. You have outcome data on summer school participants and on non-participants in a RCT on an over-subscribed summer school programme.
2. You calculate the average value of the HE applications of each of the two groups and compare them. The 'raw' difference in the mean outcome across the two groups shows the participants were more likely to say they'd make HE applications.
3. The result does not allow for the possible impact on outcomes associated with other things:
 - compositional differences across the two groups (e.g. sex, ethnicity)
 - characteristics (e.g. attainment) or engagement (e.g. in other outreach)
4. Regression analysis is needed to take account of the influence of observed confounding factors in estimating the impact of the Summer School.

RCT Example: Summer Schools

Outcome	Treatment	Control
	Mean (SD)	Mean (SD)
Likelihood of going to HE (7-point Likert scale) (n = 342)	6.60 (0.99)	6.60 (0.98)
Likelihood of progressing to academic study post-16 (5-point Likert scale) (n = 49)	4.71 (0.52)	4.73 (0.46)
Self-efficacy relating to HE (5-point Likert scale) (n = 331)	4.06 (0.66)	3.91 (0.79)
Compatibility of HE with social identity (5-point Likert scale) (n = 337)	3.97 (0.95)	3.83 (0.97)
Perception of practical barriers to HE (5-point Likert scale) (n = 330)	3.38 (0.95)	3.26 (0.96)
Applied to HE (binary yes/no) (n = 295)	0.94 (0.23)	0.91 (0.29)

Notes: Sample of students (n) per outcome included in brackets above.

<https://taso.org.uk/news-item/new-report-interim-findings-on-the-impact-of-summer-schools-in-the-time-of-covid-19/>

Effect Size

Outcome	Estimated effect (score on scale)	Standard error	Estimated effect (Cohen's <i>d</i>)
Likelihood of going to HE (7-point Likert scale) (n = 342)	-0.01	0.11	-0.01
Likelihood of progressing to academic study post-16 (5-point Likert scale) (n = 49)	-0.12	0.17	-0.06
Self-efficacy relating to HE (5-point Likert scale) (n = 331)	0.14+	0.08	0.21
Compatibility of HE with social identity (5-point Likert scale) (n = 337)	0.15	0.11	0.14
Perception of practical barriers to HE (5-point Likert scale) (n = 330)	0.10	0.10	0.12
Applied to HE (binary yes/no) (n = 295)	0.04	0.03	0.14

Notes: N per outcome included in brackets above.

'Likelihood of going to HE' and 'Applied to HE' were computed for the post-16 sample only.

'Likelihood of progressing to academic study post-16' was computed for the pre-16 sample only.

All other effects were computed for the combined pre- and post-16 sample.

+ $p < 0.1$, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

<https://taso.org.uk/news-item/new-report-interim-findings-on-the-impact-of-summer-schools-in-the-time-of-covid-19/>

Resources

Guidance

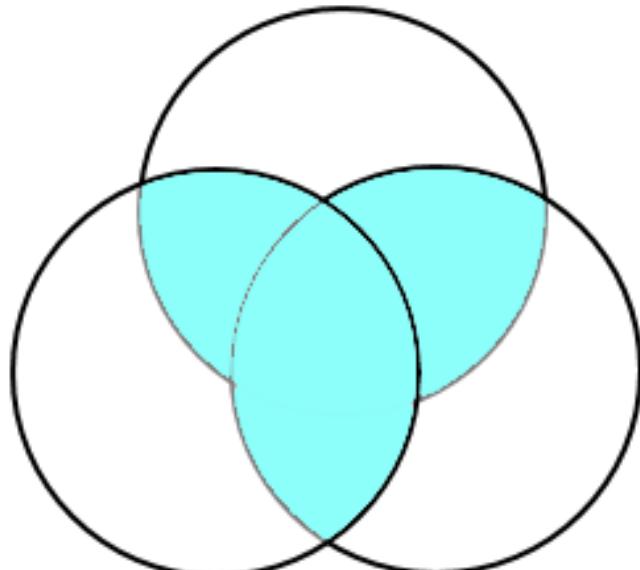
Khandker, Koolwal & Sawad (2010) Handbook on Impact Evaluation: Quantitative Methods and Practices, Washington: World Bank

Statistical packages

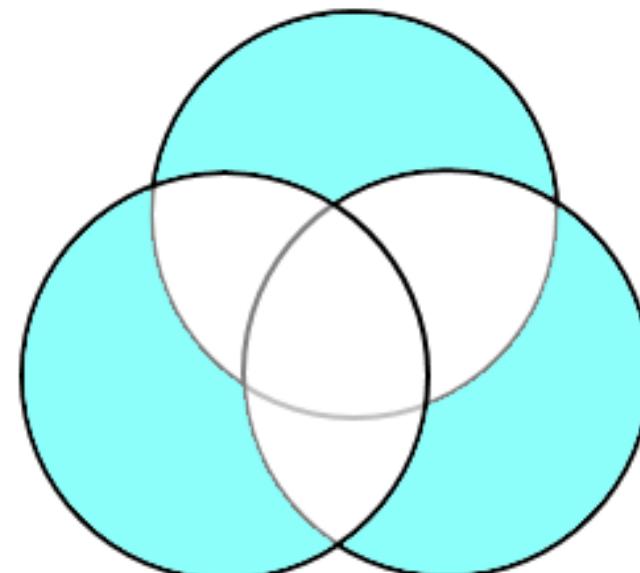
- Excel Stats package
Use the Analysis ToolPak to perform complex data analysis - Microsoft Support
- Introductory R and R Studio
<https://psyteachr.github.io/ads-v2/01-intro.html>
- SPSS
<https://www.ibm.com/spss>

Qualitative Comparative Analysis (QCA)

Orientation	Case orientated
Explanatory Focus	<ul style="list-style-type: none">• Effects of Causes
Concepts	<ul style="list-style-type: none">• Explanation of specific cases• Necessary and sufficient causes• Multiple conjectural causation (different combinations)
Measurement	<ul style="list-style-type: none">• Quantitative and qualitative<ul style="list-style-type: none">- Limited variation
Cases	<ul style="list-style-type: none">• Small-Medium N
Aims	<ul style="list-style-type: none">• Understanding/reducing complexity• 'Middle range' contextualised generalisations


May be distinct and vary according to role/context

- Learning outcomes e.g. grades and marks
- Process outcomes e.g. attendance and engagement in the intervention or wider
- The learning environment e.g. delivery, curriculum
- The process of learning e.g. interaction with content


Analytical strategy

- Qualitative comparative analysis (QCA)
'Truth Table' (Boolean Algebra using specialist computer package)

Most Different Same Outcome
(MDSO)

Most Similar Different Outcome
(MSDO)

Steps

1. Formulation of research question
2. Selection of (comparable) cases
3. Establishing similarities and differences:
4. Systematic matching of cases, MSDO
5. Systematic contrasting of cases, MDSO
6. Linking results to hypotheses
7. Further testing (e.g. with more cases, areas, time periods etc.)

QCA Truth Table Example

Name	Girl (G)	Age 14yrs or older (A)	Same School (S)	Outcome (O)
Nicola	1	1	1	1
James	0	0	1	1
Jordan	0	1	0	0
John	0	1	1	1
Jayne	1	0	0	0
Sandra	1	0	1	1
Vicky	1	1	0	1
Paul	0	0	0	0

0 = Yes

1 = No

Rules:

- Pairwise
- Stepwise
- One reduction at a time

Results

Variants

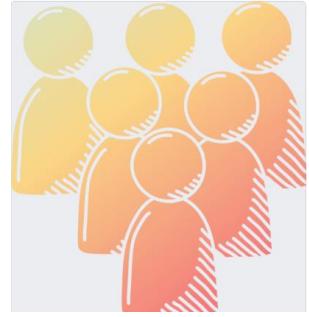
- Binary data for both independent variables (conditions) and dependent variable (outcome) = crisp set (cs-) QCA
- Limited number of values (e.g. categorical data, nominal or ordinal scales) = multi-value (mv-) QCA
- Multi-value data for both conditions and outcomes = fuzzy set (fs-) QCA

many variables	small N (~ 2-5 cases)	moderate N	larger N (>25 cases)
	MSDO	MDSO cs-QCA mv-QCA	fs-QCA

Resources

Guides

<https://taso.org.uk/evidence/evaluation-guidance-resources/impact-evaluation-with-small-cohorts/what-is-small-n-evaluation/>


<https://www.nerupi.co.uk/public/assets/images/Qualitative-Comparative-Analysis.pdf>

<https://www.betterevaluation.org/methods-approaches/methods/qualitative-comparative-analysis>

<https://methods.sagepub.com/book/the-sage-handbook-of-case-based-methods/n12.xm>

Software

- COMPASS
<https://compass.org/software>
- QCA add in for excel
- TOSMANA
<https://www.tosmana.net/>
- Also in the R software package

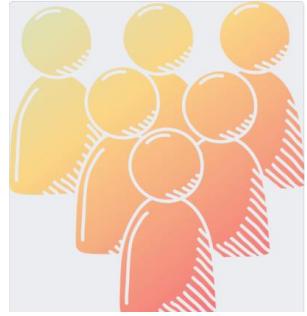
Discussion

**Are these approaches useful?
Anyone using them?**

Some Concluding remarks

Orientation	Variable orientated	Case orientated
Focus	<ul style="list-style-type: none">Effects of causes	<ul style="list-style-type: none">Effects of Causes
Concepts	<ul style="list-style-type: none">Linear, cumulativeIndependent effect of each variable	<ul style="list-style-type: none">Explanation of specific casesNecessary and sufficient causesMultiple conjectural causation
Measurement	<ul style="list-style-type: none">Quantitative (cross case comparison, estimation of average effects)	<ul style="list-style-type: none">Quantitative and qualitative (categorisations)
Cases	<ul style="list-style-type: none">Medium - Large N	<ul style="list-style-type: none">Small-Medium N
Aims	<ul style="list-style-type: none">Proof of causation/resultsEstimation/Probability/Generalisations	<ul style="list-style-type: none">Understanding/reducing complexity‘Middle range’ contextualised generalisations

Areas for Development


- Understanding linkages between short-medium-long term outcomes
 - How to define and measure the outcomes and impact?
 - Operationalisation of the intermediate learning outcomes which are useful predictors of longer term?
 - E.g. Application of validated scales
- Using Theories of Change (ToC) as the basis for setting up variables that can be used to capture effectiveness of different practice approaches

More info and suggestions for future topics?

- What types of comparative evaluations are you doing at the moment?
- What more information would you like to assist with comparative evaluations?
- What other topics should we cover in the evaluation toolkit series?

<https://padlet.com/nerupi/toolkit-requests-8mbks8sy9qsmluyt>

Thanks for Listening!
Questions and Answers

Regression analysis

- relationship between a dependent variable and one or more independent variables.

Analysis of Variance (ANOVA)

- relationship between collections of data by using the difference in the means

Cluster analysis

- similarities in a group of observations

Principal component analysis

- interpretation of uncorrelated variables

Factor analysis

- data reduction technique

Used to:

- understand patterns of data
- study multiple factors at once
- make clear comparisons
- discard unwanted information
- reduce complexity